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We study magnetic properties of the spin-1
2 Ising-like XXZ model on the Shastry-Sutherland lattices with

long-range interactions, using the quantum Monte Carlo method. This model shows magnetization plateau
phases at one-half and one-third of the saturation magnetization when additional couplings are considered. We
investigate the finite temperature transition to one-half and one-third plateau phases. The obtained results
suggest that the former case is of the first order and the latter case is of the second order. We also find that the
system undergoes two successive transitions with the two-dimensional Ising model universality although there
is a single phase transition in the Ising limit case. Finally, we estimate the coupling ratio to explain the
magnetization process observed in TmB4.
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Magnetic properties of quantum spin systems with frus-
trated antiferromagnetic interactions have been an interesting
topic from both theoretical and experimental aspects because
the strong fluctuations prevent the stabilization of classical
orderings. Some exotic ordered states, such as a spin super-
solid state on the triangular lattice,1,2 a Z2 spin liquid on the
kagome lattice,3,4 and a U�1� liquid state on the pyrochlore
lattice,5 are good examples reflecting such fluctuations. The
spin-1

2 antiferromagnetic Heisenberg model on the Shastry-
Sutherland lattices �SSLs� �Refs. 6–9� has been studied as
the other class with interesting characteristics derived from
frustration and quantum fluctuation. In previous studies, it
was suggested that this model has rich magnetization phases
including spin supersolid phases at moderate fillings between
magnetization plateau phases.10 From experimental observa-
tions for the SSL compound SrCu�BO3�2,8 it was also dis-
cussed that there is the possibility of fractionalized magnetic
plateaus at the magnetization m=mz /ms=1 /5, 1/6, 1/7, 1/9,
and 2/9 in addition to the previously reported plateaus at
m=1 /3 and 1/4.9 Here, ms indicates the saturation magneti-
zation. While one theoretical scenario for explaining these
plateaus was proposed in analogy to the quantum Hall
effect,9 a few points, such as the number of magnetization
plateaus and the magnetization values of plateaus, are at the
moment controversial.

In recent experiments on rare-earth metals RB4 �R is a
rare-earth atom�,11–15 fractionalized magnetic plateaus were
also discovered at a very low temperature. These compounds
have a tetragonal crystal structure P4 /mbm and the magnetic
moments originating from R3+ locate on the SSL in the ab
plane. In TmB4, a large m=1 /2-magnetization-plateau re-
gion was confirmed for 1.9 �T��H�3.6 �T� at a low tem-
perature when the magnetic fields are applied along the c
axis.13,14 An important point that is the most different from
SrCu�BO3�2 is that, in the TmB4 case, a strong anisotropy
along the c axis is expected owing to the crystal fields. Re-
cent analyses for specific-heat measurements and the magne-
tization process14 suggested that the J=6 multiplet of Tm3+

is lifted and then the lowest energy state for a single ion is
the non-Kramers doublet with Jz= �6, having a large energy
gap between the lowest states. This leads us to describe the

low-energy magnetic part of TmB4 by a binary model. Since
it is expected that isotropic interactions work between the
moments via itinerant electrons, we start from the two-site
Hamiltonian, H0+H�, where H0=−D�i�Ji

z�2, H�=G�ijJi ·J j,
and 0� �G��D. In the ground state of H0, there are
four degenerated states, namely, �Ji

z ,Jj
z�= ��6, �6� and

��6, �6�. When we treat H� as the perturbation, the first
nontrivial off-diagonal term occurs from the 2Jth order. The
obtained effective Hamiltonian is the spin-1

2 Ising-like XXZ
Hamiltonian with the transverse term proportionally to
−�G / �−D�	2J. Note that the transverse term always becomes
ferromagnetic independently on the sign of G because J is
integer. Meng and Wessel studied the magnetization curves
for the effective Hamiltonian by quantum Monte Carlo
computations.16 From the obtained results, it was found that
the origin of the m=1 /2 plateau can be explained by the
quantum effect because only the m=1 /3 plateau was con-
firmed in the Ising model case. However, the phase diagram
for the Ising-like XXZ model case showed that the m=1 /3
plateau phase spreads more widely than the m=1 /2 plateau
phase. Since the m=1 /3 plateau was not observed in TmB4,
their results seem to be inconsistent with the experimental
observations. This inconsistency may arise from the absence
of “long-range” interactions among magnetic moments of
Tm3+ ions, namely, the Ruderman-Kittel-Kasuya-Yosida in-
teractions. The magnetic properties of the Ising-like XXZ
model with the long-range interactions have not studied yet.
Thus, the clarification of the effects of long-range interac-
tions on the magnetic properties is an important problem and
helps us understand the origin of the m=1 /2 plateau ob-
served in TmB4.

In this Rapid Communication, we discuss the magnetic
properties of the spin-1

2 Ising-like XXZ model on the SSL
using the quantum Monte Carlo method based on the modi-
fied directed-loop algorithm.17 We consider the effects of J3
and J4 couplings in addition to the conventional SSL model
with J and J� couplings. The geometrical configuration of the
additional couplings J3 and J4 is shown in Fig. 1�a�. The
Hamiltonian considered here is described by
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H = �

i,j�

�JSi · S j���
+ �


i, j��

�J�Si · S j���
+ �


i, j��

�J3Si · S j���

+ �

i, j��

�J4Si · S j���
− g�BH�

i

Si
z, �1�

where �JSi ·S j���
=−���J��Si

xSj
x+Si

ySj
y�+JSi

zSj
z and 
ij�, 
ij��,


ij��, and 
i , j�� mean sums over all pairs on the bonds with
the J, J�, J3, and J4 couplings, respectively. Note that the
positive �negative� sign of each coupling means an antiferro-
magnetic �ferromagnetic� interaction and J�0 and J��0
are considered. In the following computations, we set
g�B=kB=1 and treat the L�L system with the periodic
boundary condition.

We present the obtained magnetization processes in
Fig. 2 when the easy-axis anisotropy and the coupling
ratio are fixed at ��=0.2 and J� /J=0.3, respectively.

The magnetization-plateau states become stable at
m=1 /2�m=1 /3� for 1.85�H /J�2.2�1.25�H /J�1.55�
when the weak ferromagnetic J4�J3� coupling is taken into
account. To investigate the spin configurations in both
plateau states, we calculate two types of correlation
functions. One is the bare spin correlation defined by
Czz�r�= 
Sz�r�Sz�0��− 
mz�2 and the other is the bond spin
correlation defined by 	b�rd�= 
B�rd�B�0��− 
B�rd��2, where
B�rd�=Srd+


z Srd−

z and B�rd� is defined only on the plaquettes

with the diagonal coupling J. The bond spin correlation is
convenient for characterizing the crystallization of the triplet
dimers with Sz=1 and Sz=0, which cannot be detected from
the bare spin correlation. From Fig. 3, we find that both spin
correlations show the presence of a true long-range order at
m=1 /3 and m=1 /2. In the L�L lattice systems at
kBT /J=0.05, we confirm that no other plateau survives in the
thermodynamic limit and that the ferromagnetic J4 coupling
tends to stabilize only the 1/2 plateau even when the cou-
pling ratio J� /J varies. Thus, we believe that the ferromag-
netic J4 coupling plays a significant role in explaining the 1/2
plateau observed in TmB4.

To discuss the reason why the field range of the 1/3 or 1/2
plateau is expanded by the ferromagnetic J3 or J4 coupling, it
is constructive to consider the Ising limit case. The lowest
energy having the magnetization m=0, 1/3, and 1/2 can eas-
ily be estimated from each spin configurations at T=0. Fig-
ure 1 shows the conventional spin configurations at a very
low temperature, which are obtained from computations for
the Ising model case. At m=0, the collinear order shown in
Fig. 1�b� is stabilized by the J3 and J4 couplings, and the
local energy is given by �co=−J /8−J3 /4+J4 /2. In the same
manner, we obtain �1/3=−J /24−J� /6+J3 /12+J4 /6−H /6 for
the 1/3 plateau state and �1/2=J4 /2−H /4 for the 1/2 plateau
state. Since the energy of the fully polarized state is given by
�F=J /8+J� /2+J3 /4+J4 /2−H /2, the field ranges of the 1/3
and 1/2 plateaus can be calculated as �H1/3=3J�−3J3+6J4
and �H1/2=2J3−4J4 respectively. Consequently the ferro-
magnetic J4 �J3� coupling makes the 1/2 �1/3� plateau state
stable, which is in contrast to the antiferromagnetic case.

Next, we investigate the finite temperature transition to
the plateau phases. To assess the nature of the finite tempera-
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FIG. 1. �a� Effective model on the SSL with diagonal coupling
J, nearest-neighbor coupling J�, and additional couplings J3 and J4.
The J3 coupling is defined on every plaquette without diagonal
coupling, and the J4 coupling corresponds to the third-nearest
neighbor coupling of the orthogonal-dimer-lattice geometry. �b�–�d�
are typical spin configurations in the m=0 collinear, 1/3 plateau,
and 1/2 plateau states, respectively. In �b�–�d�, solid �open� circles
represent up spins �down spins� and the broken �solid� line on each
diagonal bond indicates an antiparallel �parallel� spin pair. �e�
shows the bond Néel state in the intermediate phase �see text�.

FIG. 2. �Color online� Magnetization processes at kBT /J=0.05.
�a� and �b� are results when we consider J3 and J4 couplings, re-
spectively. Circles �triangles� indicate the results for the additional
ferromagnetic �antiferromagnetic� couplings. The magnetization
processes without the additional couplings are represented by
squares. The symbols are drawn with error bars, which are smaller
than the symbol size �here and the following figures�.

FIG. 3. Bare spin and bond spin correlations in 1/2 and 1/3
plateau states at kBT /J=0.05. The left-hand figures �a1� and �b1�
show the results for the 1/3 plateau state at J3 /J=−0.106 and
H /J=0.75. The right-hand figures �a2� and �b2� show the results for
the 1/2 plateau state at J4 /J=−0.106 and H /J=1. The horizontal
axis is the distance along the �1,1� direction, which is normalized by
the linear dimension L=48.
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ture transition to the 1/3 and 1/2 plateau states, we calculate
the temperature dependence of the specific heat, and the
results are shown in Fig. 4. The specific heat at
�J3 /J ,J4 /J ,H /J�= �−0.106,0 ,0.725� has a single peak and
the maximum value strongly diverges around T /J�0.052
for increasing the system size L. This implies that
the phase transition from the paramagnetic phase to the 1/3
plateau phase is of the first order. On the other hand,
the weak system size dependence in the model at
�J3 /J ,J4 /J ,H /J�= �0,−0.106,1.0� seems to result from the
second-order phase transition with a negative exponent
��0.

To clarify the order of the finite temperature transition to
the 1/3 plateau phase, we calculate static structure factors
both for bare spins S�Q0� and for bond spins 	b�Q0� at Q0
= � /3,0�. The results are shown in Fig. 5. Both structure
factors suddenly develop at T /J�0.052 and the values in-
crease proportionally to the system size below the onset tem-
perature. This result also indicates the presence of the first-
order transition. In the phenomenological renormalization-
group treatment for the first-order transition,18 the bond-spin
correlation ratio around the critical temperature scales as
	b�L /2,L /2� /	b�L /4,L /4��F�tL1/��, where F is a scaling
function, t= �T−Tc� /Tc, and the critical exponent � is given
by the inverse of the space dimensionality 1 /d�d=2�. From
Fig. 5�c�, we find that the finite-size scaling analysis is suc-
cessfully performed and the data collapse is confirmed at
Tc /J=0.516�3�.

We continue to study the universality class of the phase

transition to the 1/2 plateau. From the low-temperature spin
configuration in the Ising limit case �see Fig. 1�d��, we can
expect C4 symmetry breaking. Since the lowest energy state
of the 1/2 plateau phase is fourfold degenerated in context of
the bare spin language, the universality class of this phase
transition is naively expected to be the four-state-Potts uni-
versality class �the critical exponents are given by �=2 /3
and �=1 /12�. In fact, we confirm a single phase transition
belonging to the four-state Potts universality class in the
Ising limit case.21 However, it is also possible that the C4
symmetry breaks down in two separate steps as we see be-
low.

By introducing the 90° lattice rotation “c4” around the
center of a plaquette without diagonal coupling, the symme-
try group can be expressed as C4= �e ,c4 ,c4

2 ,c4
−1	. At the

higher critical temperature Tc1, the symmetry breaks down to
�e ,c4

2	, which is the symmetry of the intermediate phase, and
at the lower critical temperature Tc2, the remaining symmetry
breaks down to the trivial group �e	. To detect them, we
introduce two kinds of order parameters here. The symmetry
breaking at Tc1 can be characterized by a bond-spin “stag-
gered magnetization” represented by Bst= ��rd

�−1� f�rd�B�rd��,
where f�rd� takes �1 depending on the position of the diag-
onal coupling. The other symmetry breaking at Tc2 can be
characterized by freezing the antiferromagnetic fluctuation
on the diagonal bond J, so that the order parameter is given
by mx

c=S4
z −S1

z or my
c =S3

z −S2
z . Here, the suffixes of longitudi-

nal spin operators represent the site indexes shown in Fig.
1�d�. Figure 6�a1� shows the temperature dependence of the
Binder ratio RB for the staggered magnetization Bst. We find
that RB has a single crossing point at kBTc1 /J=0.0822�3�.
Since the Z2 symmetry breaking at Tc1 is expected from the
viewpoint of bond spin ordering, an intuitive speculation for

FIG. 4. Temperature dependence of specific heat at �a�
�J3 /J ,J4 /J ,H /J�= �−0.106,0 ,0.725� and �b� �J3 /J ,J4 /J ,H /J�
= �0,−0.106,1.0�.

FIG. 5. �Color online� Transition to 1/3 plateau phase. Tempera-
ture dependence of static structure factors for �a� bare and �b� bond
spins at Q0= � /3,0�. Insets show their size dependence. �c� Finite
size scaling for correlation ratio of bond spins.

FIG. 6. Transition to 1/2 plateau phase. �a1� Temperature depen-
dence of the Binder ratio RB. Finite-size scaling analysis for �a2�
correlation ratio and �a3� staggered magnetization Bst. �b1� Tem-
perature dependence of the Binder ratio RS and �b2� finite size scal-
ing for fourth-order cumulant US

4.
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the universality class of the phase transition leads us to ex-
pect the two-dimensional �2D� Ising universality class. We
thus perform the data collapse assuming the scaling form
	b�L /2,0� /	b�L /3,0�=F�tL1/�� and BstL

�/�=F�tL1/�� with
�=1 and �=1 /8. The results are shown in Figs. 6�a2� and
6�a3�. The data collapse is confirmed with good accuracy
despite the fact that we did not vary both the critical expo-
nents and the critical temperature in the analysis. The tem-
perature dependence of the Binder ratio RS of mx

c provides a
clear evidence of another phase transition. As shown in Fig.
6�b1�, RS has a single crossing point at kBTc2 /J=0.0760�2�
and the value is clearly different from that of the bond-spin
ordering temperature. The universality class of the phase
transition at Tc2 is expected to be the same as that of the 2D
Ising model because the remaining symmetry C2 is isomor-
phic to Z2. Actually, the finite-size scaling analysis for the
fourth order cumulant US

4 of mx
c can be achieved by using

US
4=F�tL1/�� and �=1, as shown in Fig. 6�b2�. From the

obtained results, we conclude that there exists an intermedi-
ate phase that can be characterized by the bond Néel order-
ings accompanying the internal antiferromagnetic bare-spin
fluctuation �see Fig. 1�e��.

The obtained result has an interesting nature; the critical-
ity is different from that of the four-state Potts model. One of
the interpretations for this discrepancy is given by the phase
diagram of the generalized four-state clock model, which
may be similar to that of the generalized Ashkin-Teller
model.19,20 In the Ising limit case, the phase transition corre-
sponds to the P4 fixed point on the self-dual line. If the
transverse coupling �Si

+Sj
−+H.c.� is added, the criticality may

change owing to the breaking of self duality; the model un-
dergoes two successive phase transitions with the 2D Ising
universality or only one phase transition with the weak 2D
Ising universality. Further investigations in this direction are
now in progress and will be published elsewhere.21

Finally, we discuss the magnetization of TmB4. It was
observed that the 1/2 plateau state appears for 1.9 �T��H
�3.6 �T� at 2 �K�,13 and the observed magnetization process
associates with the coupling ratio J� /J�1 and the strong
Ising anisotropy ���1.15 From these facts, we roughly es-
timate the coupling ratios J3 /J and J4 /J by the local energy
estimation in the Ising model case with J� /J=1. We obtain
the coupling ratios as J3 /J�0.1182 and J4 /J�−0.25 at
J� /J=1 with J�0.090 �K�.22 Note that the field range of the
1/2 plateau state does not depend on J4, although the J4
coupling is important for the appearance of the 1/2 plateau.
Furthermore we comment that this parameter set also gives a
consistent Néel temperature TN�7 �K� at H=0 �experimen-
tally, it was TN�9.6 �K��. In previous studies, it was clari-
fied by the Monte Carlo calculations for the minimal Ising
model with J3=J4=0 that the plateaus except the 1/3 plateau
are not stabilized.16 Thus, our estimation seems to be reason-
able. However, checking its validity more precisely via com-
parison with the other experimental observations might be
required, because a small plateau at m�1 /8, which our
model could not replicate it, has been observed experimen-
tally.
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